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Abstract--React ion of [(C4R4)Ir(PPh3)2C1] (4, R = C O 2 C H 3 )  and creatinine in chloroform at 23 °C gave the 
creatinine complex [(C4R4)Ir(C4HTN30)(PPh3)2C1 ] (6) in 81% isolated yield. Reaction of the bis (aceto- 
nitrile)iridium cation [(C4R4)Ir(NCCH3)2(PPh3)2][BF4] (5, R = CO2CH3) and creatinine in chloroform at 23 
C gave [(C4R4)Ir(C4H7N30)(PPh3)2][BF4] (7, R = CO2CH3) in 96% isolated yield. X-ray crystallography 
established two unprecedented coordination modes for creatine in complexes 6 and 7. In complex 6 the 
creatinine is bound to iridium in a monodentate fashion through the exocyclic nitrogen, whereas creatinine 
serves as a bidentate ~/2-(N,O)-ligand in 7. © 1997 Elsevier Science Ltd. All rights reserved. 

Keywords: creatinine; iridium; metallacycle. 

Creatinine (1) is a blood metabolite of interest as an 
indicator of renal dysfunction [1]. In the solid state 
[2a] and in polar solvents [3] creatinine exists as tau- 
tomeric form la,  although MNDO calculations on 
the gas-phase structure [4] indicate a preference for 
lb (Fig. 1). Bell and co-workers recently described the 
design and use of organic receptors for creatinine 
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Fig. 1. Tautomeric forms of creatinine (l). 
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binding and detection [2]. In principle, metal com- 
plexes may also serve as the basis for creatinine recep- 
tors. Complexes of creatinine have been widely 
reported (M = Co [5], Ni [6,7], Cu [8-11], Zn [12], 
Pd [13,i4], Ag [15], Cd [12], Pt [13,14,16-18], Hg [12]) 
and a number of solid-state structures have appeared 
in the literature (M = Ni [7], Cu [8,10], Pd [13], Ag 
[15], Pt [3,14,17,18], Hg [12]). In mononuclear metal 
complexes, creatinine typically coordinates to the 
metal via the ring nitrogen (I, Fig. 2), as observed in 
the solid-state structure of [Ni(C4H7N30)2(H20)4] 
[C112 (2) [7]. Metals are also capable of coordination 
to the oxygen ofcreatinine (II), as demonstrated struc- 
turally for [Ni(CaHvN30)2(en)2][BPh4] 2 (3) [7]. Herein 
we report the synthesis, spectroscopy and structural 
characterization of iridium-creatinine complexes that 
establish two new binding modes for mononuclear 
creatinine complexes: q2-(N,O)-coordination (III, Fig. 
2), and ql-(N)-coordination through the exocyclic ring 
nitrogen (IV, Fig. 2). 
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Fig. 2. Coordination modes for transition metal~zreatinine complexes. 

EXPERIMENTAL 

General 

Creatinine was purchased from Aldrich Chemical 
Co. and used without further purification. The iridium 
starting complexes, [(C4R4)Ir(PPh02CI] (4, 
R = CO2CH3) [19] and [(C4R4)Ir(NCCH3)2(PPh3)2] 
[BF4] (5, R = CO2CH3) [20], were prepared as 
described in the literature. Infrared (IR) spectra were 
recorded on a Perkin Elmer 1330 IR spectrometer. 
Melting points were determined in sealed capillaries 
using an electrothermal melting point apparatus. 
Elemental analysis were performed by Desert 
Analytics. ~H and ~3C N M R  spectra were recorded at 
ambient probe temperature on either a GE QE 300 
N M R  or a Varian U N I T Y  500 N M R  spectrometer. 
IH N M R  chemical shifts are reported relative to the 
residual protio-solvent resonance of  CHC13, 6 7.24. 
~3C N M R  chemical shifts are reported relative to the 
CDCI3 resonance at 6 77.0. 

Preparation of [(C4R4)Ir(C4H7N30)(PPh3)2CI] (6, 
R = CO2CH3) 

A 50 cm 3 round-bot tomed flask equipped with 
a magnetic stir bar was charged with 
[(C4R4)Ir(PPh3)2C1] (4, R = CO2CH3) (0,48 g, 0.46 
mmol)  and creatinine (0.13 g, 1.2 mmol).  Chloroform 
(15 cm 3) was added and the slurry was stirred for 
approximately 30 h at room temperature. The solution 
was filtered and concentrated to ca 5 cm 3. Addition of  
hexanes (15 cm 3) led to a precipitate which was 
filtered, washed with additional hexanes and dried in 
vacuo to give 6 as a tan powder (0.43 g, 81%); m.p. 
218-221°C; IR (KBr): 3321 w, 3062 w, 2944 w, 1759 
s, 1716s, 1673 vs, 1432 s, 1343 s, 1209 vs, l l 6 0 s c m  J; 
JH N M R  (CDC13): 6 10.25 (s, IH),  7.55 (m, 12H) 
7.31-7.18 (m, 18H), 6.27 (s, 1H), 3.49 (s, 3H), 3.43 (s, 
3H), 3.41 (s, 3H), 3.38 (s, 3H), 3.36 (s, 2H), 2.40 (s, 
3H). ~3C-{~H} N M R  (CDCI3): 6 174.5, 174.0, 168.4, 
166.2, 165.8, 159.3, 152.9, 151.4 (t, J = 7.0 Hz), 149.2, 
141.1 (t, J =  7.8 Hz), 135.1 (t, J = 4 . 0  Hz), 130.1 (t, 
J = 26.8 Hz), 129.4, 127.0, 52.5, 51.2, 51.0, 50.7, 50.5, 
29.5. 

Preparation of  [(CnR4)Ir(C4H7N30)(PPh3)2] [BF4] (7, 
R = CO2CH3) 

A 50 cm 3 round-bot tomed flask equipped with a 
magnetic bar was charged with [(C4R4)Ir(PPh3)2C1 ] 
(4, R = CO2CH3) (0.40 g, 0.39 mmol),  creatinine 
(0.055 g, 0.48 mmol)  and AgBF4 (0.082 g, 0.42 mmol).  
Chloroform (20 cm 3) was added and the slurry was 
stirred for approximately 14 h at room temperature. 
The solution was filtered through Celite and the Celite 
washed with additional chloroform. The solution was 
concentrated and pentane added to precipitate a 
yellow powder which was filtered, washed with 
additional pentane and dried under vacuum, to give 7 
as a yellow powder (0.46 g, 96%); m.p. 255.5-258 °C; 
IR (KBr): 3072 w, 2946 w, 1710 s, 1692 s, 1669 s, 1617 
s, 1507 vs, 1433 vs cm ~; IH N M R  (CDCI3): 6 7.97 (s, 
1H), 7.75 (s, 1H), 7.40 (m, 30H), 3.43 (s, 3H), 3.42 (s, 
3H), 3.38 (s, 3H), 3.21 (s, 3H), 2.80 (s, 3H), 2.52 (s, 
2H). '~C-['H} N M R  (CDCI3): 6 188.2 (t, J = 1.4 Hz), 
171.7, 170.8, 165.9 (t, J = 1.4 Hz), 165.7 (t, J = 1.1 
Hz), 163.7, 153.7 (t, J =  1.9 Hz), 152.2 (t, J = 1.6 
Hz), 142.0 (t, J = 7.2 Hz), 134.4 (t, J = 5.3 Hz), 130.9, 
128.4 (t, J = 5.3 Hz), 127.4 (m), 127.0 (t, J = 27.5 
Hz), 55.7, 52.5, 51.2, 51.0, 50.9, 31.2. Found: C, 52.0; 
H, 4.1. Calc. for CszH49OgN3PzlrBF4: C, 52.0; H, 
4.1%. 

X-ray structure determination for [(C4R4)Ir 
(C4HvN~O)(PPh3)2CI] (6, R = CO2CH3) 

For  C52HsoC14IrN3OgP2: monoclinic, P21/n, 
a = 13.802(4), b = 24.467(6), c = 15.729(5)A, 
l~ = 100.48(2)", V = 5223(2)A 3, Z = 4, T = 238 K, 
/~(Mo-K~) = 28.80 cm 1, D~alc = 1.598 g cm 3, 
R (F) = 4.63% for 6972 observed independent reflec- 
tions (4 ~< 20 ~< 52:). Semi-empirical absorption cor- 
rections were applied. The structure was solved using 
heavy-atom methods, completed by subsequent 
difference Fourier  syntheses and refined by full-matrix 
least-squares procedures. All non-hydrogen atoms 
were refined anisotropically. Hydrogen atoms were 
treated as idealized contributions. A solvent molecule 
of  CHCI3 was located in the asymmetric unit. The 
largest remaining peaks in the difference map 
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(max. = 1.56 e,X-3) occurred at chemically unreason- 
able positions and were considered as noise. All sof- 
tware and sources of the scattering factors are 
contained in the SHELXTL (4.2) program library (G. 
Sheldrick, Siemens SRD, Madison, WI). 

X-ray structure determination for [(CaR4)Ir 
(C4HTNsO)(PPh3)2][BF4] (7, R = CO2CH3) 

For C52H49BF4IrN309P2: monoclinic, P2~/c 
a = 11.682(3), b = 36.369(4), c = 11.989(2)A, 
/3 = 93.07(1) , V = 5086(1)A 3, z = 4, T = 233 K, 
#(Mo-K~) = 27.60 cm ~, Dc,~¢ = 1.567 g cm 3, 
R (F) = 5.39% for 7403 observed independent reflec- 
tions (4 ~< 20 ~< 55~'). Semi-empirical absorption cor- 
rections were applied. The structure was solved using 
direct methods, completed by subsequent difference 
Fourier syntheses and refined by full-matrix least- 
squares procedures. Carbon atom C(22) is disordered 
over two positions with an occupancy distribution of 
1: 1. All non-hydrogen atoms were refined aniso- 
tropically. Hydrogen atoms were treated as idealized 
contributions. The largest remaining peaks in the 
difference map (max = 2.152 e~ 3) occurred at 
chemically unreasonable positions and were con- 
sidered as noise. All software and sources of the scat- 
tering factors are contained in the SHELXTL (5.3) 
program library (G. Sheldrick, Siemens SRD, Madi- 
son, WI). 

Atomic coordinates have been deposited with the 
Cambridge Crystallographic Data Centre. 

RESULTS AND DISCUSSION 

Synthesis and characterization ~?f 6 

When a chloroform slurry of the iridia- 
cyclopentadiene complex 4 and creatinine was stirred 
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at room temperature for about 30 h the insoluble 
creatinine partially dissolved, with concomitant for- 
mation of the iridium-creatinine complex 6. Removal 
of the excess creatinine by filtration, concentration of 
the solution volume and addition of hexanes led to 
isolation of 6 as a tan colored powder in 81% yield 
(Scheme 1). In the ~H NMR spectrum (CDC13) of 6 
four singlets (3H each) assigned to the methyl ester 
hydrogens are observed at 6 3.49, 3.43, 3.41, 3.38, and 
a fifth singlet (3H) at 2.40 is assigned to the hydrogens 
of the creatinine methyl hydrogens. The methylene 
hydrogens appear as a singlet at 6 3.36 (2H), and two 
singlets at 10.25 (1H) and 6.27 (1H) are attributed to 
the hydrogens on the ring nitrogen and the imine 
nitrogen, respectively. The NH chemical shift assign- 
ments are supported by the observation of a NOE at 
the 6 6.27 resonance upon irradiation of the methyl 
hydrogen resonance at 6 2.40 in the ~H NMR spec- 
trum. 

An X-ray crystallographic analysis was undertaken 
in order to determine unambiguously the structure of 
6 (Figs 3 and 4). Crystal data, data collection and 
refinement parameters are summarized in Table 1. 
Selected bond distances and bond angles are given in 
Tables 2 and 3, respectively. The structural data reveal 
that the creatinine ligand exists in tautomer form lb, 
with the exocyclic nitrogen bound to iridium. The 
N(3)--C1 distance of 2.99 ~ is consistent with the 
presence of a hydrogen bond between the chloro 
ligand and one of the ring nitrogens. This distance 
compares with the intermolecular N--C1 hydrogen 
bond distance of 3.212(4) observed for creatininium 
tetrachlorocuprate, [CuC14] 2 [(CgHsN30)2] 2+ [10]. 
The N(2), C(5), N(3), C(6), C(7) five-membered ring 
is nearly planar with the largest deviation from the 
mean plane at 0.018 A for N(2). The C(5)--N(1) 
distance of 1.276(10) ~ is consistent with a greater 
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Fig. 3. ORTEP representation of 6. 

degree of C - - N  double bond character in 6 than the 
related carbon-nitrogen distances in free creatinine 
[1.320(3), Fig. 5] [2a] and nickel complexes 2 [1.299(5) 
AI and 3 [1.326(5)/~]. 

The iridium-carbon bond distances in the but- 
adiendiyl ligand of 6 are much shorter, [2.062(8) and 
2.018(7) A], than those in related iridiacyclo- 
pentadienes with rr-acceptor ligands in the t rans  

positions. For  example, [(C4R4)Ir(PPh3)2(~CCH2 

J. M. O'Connor e t  al. 

CH2CH20)(CO)][BF4] (8, R=CO2CH3) ,  exhibits 
butadiendiyl iridium-carbon distances of 2.108(7) and 
2.101 (7) A. Furthermore, the iridium-carbon double 
bond distance [2.025(7) /~] fbr the carbene ligand of 
8 is comparable to the Ir--C(4) distance of 2.018(7) 

in 6. Examination of the carbon-carbon bond dis- 
tances in the butadiendiyl ligand of 6 also support a 
metallacyclopentatriene resonance contribution [21] 
to the structure of the metallacyclopentadiene ring. 

In an effort to observe a mononuclear complex con- 
taining a bidentate creatinine ligand we examined the 
reaction of the bis(acetonitrile) cation, [(C4R4) 
Ir(NCCH3)2(PPh3)2] [BF4] (5, R = CO2CH3) , with 
creatinine in CDCI 3. When the reaction was moni- 
tored by 1H NMR spectroscopy the slow (weeks) for- 
mation of a new iridium complex was observed. 
Formation of this new complex is facilitated when the 
cationic iridiacyclopentadiene complex is generated in 
the absence of acetonitrile. Thus, when the chloro 
ligand of 4 is abstracted with AgBF4 in a het- 
erogeneous chloroform/creatinine mixture, the solid 
creatinine is partially extracted into the solution, with 
concomitant formation of a creatinine complex, 7, 
which was subsequently isolated as a yellow powder 
in 96% yield. The observation of two singlets at 6 7.97 
(1 H) and 7.75 (1H) in the tH NMR spectrum (CDCI3) 
of 7 clearly reveals a different bonding mode tbr cre- 
atinine compared with that observed in 6. An X-ray 
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Fig. 4. Selected bond distances (~) for 6. 
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Table 1. Crystallographic data for C52H49CIIrN3OgP2" CHCI3 (6) and Cs2H49BF4IrN3OgP 2 (7) 

(6) (7) 

Formula Cs3Hs0CI4IrN3OgP 2 Cs2H49BF4IrN 309P2 
Formula weight 1256.9 1200.9 
Space group P2dn P2~/c 
a, k 13.802(4) 11.682(3) 
b, ,~ 24.467(6) 36.369(4) 
c, ,~ 15.729(5) 11.989(2) 
8, ° 100.48(2) 93.07(1) 
V, ~3 5223(2) 5086(1) 
Z 4 4 
Cryst color amber block yellow plate 
D (calc), g cm 3 1.598 1.567 
#(Mo-K,), cm ' 28.80 27.60 
Temp., K 238 233 
Radiation Mo-K, (2 = 0.71073 ~) 
R (F), % 4.63 a 5.39 b 
R (wF), % 5.28" 11.34 b'' 

"Quantity minimized = EwA2; R = ZA/E(Fo); R(w) = EAwl/:/Z(Fow~"2), A = I ( F o  - -  F c ) l .  

hR = EA/E(Fo), A = I(Fo - Fc)l; Quantity minimized = R(wF 2) = E[w(Fo 2 -- F~2)2]/ 
y[(wr02)2] '/2. 

'R (wF:), %. 
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crystallographic study was carried out to determine 
unambiguously the structure of  7 (Figs 6 and 7). 
Crystal data, data collection, and refinement par- 
ameters are summarized in Table 1. Selected bond 
distances and bond angles are given in Tables 2 and 
3, respectively. The structural data unambiguously 
establish the first example of  an q2-(N,O)-bonding 
mode for creatinine. The i r idium-ni trogen distance of  
2.217(5) ~ for 7 is substantially longer than the irid- 
ium-ni t rogen distance of  2.150(7) in 6. The 
N(3) - -C(6)  and C(6)- -O(60)  bond distances of  

Table 2. Selected bond lengths (k) for 6 and 7 

6 7 
Ir--C1 2.486(2) - -  
Ir--P(l)  2.379(2) 2.379(2) 
Ir--P(2) 2.391 (2) 2.363 (2) 
lr--C(1) 2.062(8) 2.028(6) 
Ir--C(4) 2.018(7) 2.003(6) 
Ir--N(1) 2.150(7) - -  
Ir--N(3) - -  2.217(5) 
Ir--O(60) - -  2.335(4) 
C(1)--C(2) 1.335(10) 1.368(9) 
C(2)--C(3) 1.446(11) 1.416(9) 
C(3)--C(4) 1.376(11) 1.377(9) 
N(I)--C(5) 1.276(10) 1.288(9) 
N(2)--C(5) 1.344(11) 1.326(9) 
N ( 2 ) ~ ( 7 )  1.441 (12) 1.442(9) 
N(2)--C(20) 1.447(12) 1.462(9) 
N(3)--C(5) 1.361 (10) 1.369(8) 
N(3)--C(6) 1.353(13) 1.347(8) 
O(60)--C(6) 1.216(12) 1.257(8) 
C(6)---C(7) 1.495(14) 1.488(9) 

1.347(8) and 1.257(8) ,~ are indicative of  ni t rogen-  
carbon double bond and carbon-oxygen single bond 
character. As is observed in both the structure of  free 
creatinine and complex 6, the N ( I ) - - C  (5) bond length 
of  1.288(9) in 7 exhibits significant double bond 
character. The N(2), C(5), N(3), C(6), C(7) five-mem- 

Table 3. Selected bond angles (°) for 6 and 7 

6 7 
CI--lr--P(1) 88.1 (1) - -  
CI--Ir--P(2) 93.3(1) - -  
CI--lr--N(1) 90.6(2) - -  
CI--Ir---C(1) 98.9(2) - -  
N(1)--Ir--C(4) 92.0(3) - -  
P(I)--Ir--P(2) 176.5(1) 175.61(6) 
C(I)--Ir--C(4) 78.6(3) 78.8(3) 
C(4)--Ir--N(3) - -  110.5(2) 
C(l)--Ir--O(60) - -  112.1 (2) 
N(3)--Ir---O(60) - -  58.7(2) 
N(3)--Ir--P(2) - -  91.61(14) 
N(3)--Ir--P(I) - -  89.68(14) 
O(60)--Ir--P(1) - -  91.71(12) 
O(60)--Ir--P(2) 85.39(12) 
Ir--N(1)--C(5) 137.2(5) 
Ir--N(3)--C(5) - -  159.7(5) 
Ir--N(3)--C(6) - -  92.9(4) 
N(1)--C(5)--N(2) 127.5(7) 126.0(7) 
N(1)--C(5)--N(3) 124.9(7) 121.8(6) 
N(2)--C(5)--N(3) 107.5(7) 112.2(6) 
O(60)--C(6)--N(3) 126.5(10) 118.0(6) 
O(60)---C(6)--C(7) 127.6(10) 131.7(6) 
N(3)--C(6)---C(7) 105.9(8) 110.2(6) 
N(2)---C(7)~C(6) 102.6(8) 101.2(6) 



2034 
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C 1 1 3 2 ) ~  

C(123, C(124) ~'~'~ COIl) C(Itl~12) 

0(12) ~ C(221 

cO) N0 

• " _~_.. 0(421 ~ C(4I) | ~ ,) k..//,-t~; CIT) o(3o ~' ~ ~ [ c(2o) 
C(222)~'~(~ ~P(2 )N~ .  V ~C(233, 

~ C(2t4) 

Fig. 6. ORTEP representation of 7. 

bered ring is nearly planar with the largest deviation 
from the mean plane at 0.022 & for N(2). N(3) is 
0.054 ~. above the plane defined by Ir, C(5) and C(6). 
In free creatinine the five-membered ring is also 
planar, with the largest deviation from planarity at 
-0 .0143/~  for C(42). In creatinine N(41) is 0.124 
below the plane defined by C(42), C(45) and C(47). 
The iridium~zarbon distances in the butadiendiyl 

ligand of 7 are even shorter than in 6, again indicative 
of significant metallacyclopentatriene character in the 
metallacyclopentadiene ring. 
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